Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Commun ; 13(1): 7003, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116500

ABSTRACT

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genome, Viral/genetics , COVID-19/epidemiology , Pandemics , Genomics
2.
Front Immunol ; 13: 950666, 2022.
Article in English | MEDLINE | ID: covidwho-2113954

ABSTRACT

The on-going COVID-19 pandemic has given rise to SARS-CoV-2 clades and variants with differing levels of symptoms and severity. To this end, we aim to systematically elucidate the changes in the pathogenesis as SARS-CoV-2 evolved from ancestral to the recent Omicron VOC, on their mechanisms (e.g. cytokine storm) resulting in tissue damage, using the established K18-hACE2 murine model. We reported that among the SARS-CoV-2 viruses tested, infection profiles were initially similar between viruses from early clades but started to differ greatly starting from VOC Delta, where the trend continues in Omicron. VOCs Delta and Omicron both accumulated a significant number of mutations, and when compared to VOCs Alpha, Beta, and earlier predecessors, showed reduced neurotropism and less apparent gene expression in cytokine storm associated pathways. They were shown to leverage on other pathways to cause tissue damage (or lack of in the case of Omicron). Our study highlighted the importance of elucidating the response profiles of individual SARS-CoV-2 iterations, as their propensity of severe infection via pathways like cytokine storm changes as more variant evolves. This will then affect the overall threat assessment of each variant as well as the use of immunomodulatory treatments as management of severe infections of each variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , COVID-19/genetics , Cytokine Release Syndrome , Lung/pathology , Pandemics
3.
Trials ; 23(1): 498, 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1962883

ABSTRACT

BACKGROUND: Over 2021, COVID-19 vaccination programs worldwide focused on raising population immunity through the primary COVID-19 vaccine series. In Singapore, two mRNA vaccines (BNT162b2 and mRNA-1273) and the inactivated vaccine CoronaVac are currently authorized under the National Vaccination Programme for use as the primary vaccination series. More than 90% of the Singapore population has received at least one dose of a COVID-19 vaccine as of December 2021. With the demonstration that vaccine effectiveness wanes in the months after vaccination, and the emergence of Omicron which evades host immunity from prior infection and/or vaccination, attention in many countries has shifted to how best to maintain immunity through booster vaccinations. METHODS: The objectives of this phase 3, randomized, subject-blinded, controlled clinical trial are to assess the safety and immunogenicity of heterologous boost COVID-19 vaccine regimens (intervention groups 1-4) compared with a homologous boost regimen (control arm) in up to 600 adult volunteers. As non-mRNA vaccine candidates may enter the study at different time points depending on vaccine availability and local regulatory approval, participants will be randomized at equal probability to the available intervention arms at the time of randomization. Eligible participants will have received two doses of a homologous mRNA vaccine series with BNT162b2 or mRNA-1273 at least 6 months prior to enrolment. Participants will be excluded if they have a history of confirmed SARS or SARS-CoV-2 infection, are immunocompromised, or are pregnant. Participants will be monitored for adverse events and serious adverse events by physical examinations, laboratory tests and self-reporting. Blood samples will be collected at serial time points [pre-vaccination/screening (day - 14 to day 0), day 7, day 28, day 180, day 360 post-vaccination] for assessment of antibody and cellular immune parameters. Primary endpoint is the level of anti-SARS-CoV-2 spike immunoglobulins at day 28 post-booster and will be measured against wildtype SARS-CoV-2 and variants of concern. Comprehensive immune profiling of the humoral and cellular immune response to vaccination will be performed. DISCUSSION: This study will provide necessary data to understand the quantity, quality, and persistence of the immune response to a homologous and heterologous third booster dose of COVID-19 vaccines. This is an important step in developing COVID-19 vaccination programs beyond the primary series. TRIAL REGISTRATION: ClinicalTrials.gov NCT05142319 . Registered on 2 Dec 2021.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Clinical Trials, Phase III as Topic , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
4.
NPJ Digit Med ; 5(1): 83, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1908302

ABSTRACT

IDentif.AI-x, a clinically actionable artificial intelligence platform, was used to rapidly pinpoint and prioritize optimal combination therapies against COVID-19 by pairing a prospective, experimental validation of multi-drug efficacy on a SARS-CoV-2 live virus and Vero E6 assay with a quadratic optimization workflow. A starting pool of 12 candidate drugs developed in collaboration with a community of infectious disease clinicians was first narrowed down to a six-drug pool and then interrogated in 50 combination regimens at three dosing levels per drug, representing 729 possible combinations. IDentif.AI-x revealed EIDD-1931 to be a strong candidate upon which multiple drug combinations can be derived, and pinpointed a number of clinically actionable drug interactions, which were further reconfirmed in SARS-CoV-2 variants B.1.351 (Beta) and B.1.617.2 (Delta). IDentif.AI-x prioritized promising drug combinations for clinical translation and can be immediately adjusted and re-executed with a new pool of promising therapies in an actionable path towards rapidly optimizing combination therapy following pandemic emergence.

5.
Clin Infect Dis ; 75(1): e1128-e1136, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1702780

ABSTRACT

BACKGROUND: The impact of SARS-CoV-2 variants of concern (VOCs) on disease severity is unclear. In this retrospective study, we compared the outcomes of patients infected with B.1.1.7, B.1.351, and B.1.617.2 with wild-type strains from early 2020. METHODS: National surveillance data from January to May 2021 were obtained and outcomes in relation to VOCs were explored. Detailed patient-level data from all patients with VOC infection admitted to our center between December 2020 and May 2021 were analyzed. Clinical outcomes were compared with a cohort of 846 patients admitted from January to April 2020. RESULTS: A total of 829 patients in Singapore in the study period were infected with these 3 VOCs. After adjusting for age and sex, B.1.617.2 was associated with higher odds of oxygen requirement, intensive care unit admission, or death (adjusted odds ratio [aOR], 4.90; 95% confidence interval [CI]: 1.43-30.78). Of these patients, 157 were admitted to our center. After adjusting for age, sex, comorbidities, and vaccination, the aOR for pneumonia with B.1.617.2 was 1.88 (95% CI: .95-3.76) compared with wild-type. These differences were not seen with B.1.1.7 and B.1.351. Vaccination status was associated with decreased severity. B.1.617.2 was associated with significantly lower polymerase chain reaction cycle threshold (Ct) values and longer duration of Ct value ≤30 (median duration 18 days for B.1.617.2, 13 days for wild-type). CONCLUSIONS: B.1.617.2 was associated with increased severity of illness, and with lower Ct values and longer viral shedding. These findings provide impetus for the rapid implementation of vaccination programs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Cohort Studies , Humans , Retrospective Studies , SARS-CoV-2/genetics
7.
Clin Infect Dis ; 71(15): 786-792, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-1217824

ABSTRACT

BACKGROUND: Rapid identification of COVID-19 cases, which is crucial to outbreak containment efforts, is challenging due to the lack of pathognomonic symptoms and in settings with limited capacity for specialized nucleic acid-based reverse transcription polymerase chain reaction (PCR) testing. METHODS: This retrospective case-control study involves subjects (7-98 years) presenting at the designated national outbreak screening center and tertiary care hospital in Singapore for SARS-CoV-2 testing from 26 January to 16 February 2020. COVID-19 status was confirmed by PCR testing of sputum, nasopharyngeal swabs, or throat swabs. Demographic, clinical, laboratory, and exposure-risk variables ascertainable at presentation were analyzed to develop an algorithm for estimating the risk of COVID-19. Model development used Akaike's information criterion in a stepwise fashion to build logistic regression models, which were then translated into prediction scores. Performance was measured using receiver operating characteristic curves, adjusting for overconfidence using leave-one-out cross-validation. RESULTS: The study population included 788 subjects, of whom 54 (6.9%) were SARS-CoV-2 positive and 734 (93.1%) were SARS-CoV-2 negative. The median age was 34 years, and 407 (51.7%) were female. Using leave-one-out cross-validation, all the models incorporating clinical tests (models 1, 2, and 3) performed well with areas under the receiver operating characteristic curve (AUCs) of 0.91, 0.88, and 0.88, respectively. In comparison, model 4 had an AUC of 0.65. CONCLUSIONS: Rapidly ascertainable clinical and laboratory data could identify individuals at high risk of COVID-19 and enable prioritization of PCR testing and containment efforts. Basic laboratory test results were crucial to prediction models.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Case-Control Studies , Child , Clinical Laboratory Techniques , Coronavirus Infections/virology , Diagnostic Tests, Routine/methods , Female , Humans , Male , Mass Screening/methods , Middle Aged , Pandemics , Pneumonia, Viral/virology , Polymerase Chain Reaction/methods , Retrospective Studies , SARS-CoV-2 , Singapore/epidemiology , Sputum/virology , Young Adult
8.
Sci Rep ; 11(1): 7477, 2021 04 05.
Article in English | MEDLINE | ID: covidwho-1169408

ABSTRACT

We aim to describe a case series of critically and non-critically ill COVID-19 patients in Singapore. This was a multicentered prospective study with clinical and laboratory details. Details for fifty uncomplicated COVID-19 patients and ten who required mechanical ventilation were collected. We compared clinical features between the groups, assessed predictors of intubation, and described ventilatory management in ICU patients. Ventilated patients were significantly older, reported more dyspnea, had elevated C-reactive protein and lactate dehydrogenase. A multivariable logistic regression model identified respiratory rate (aOR 2.83, 95% CI 1.24-6.47) and neutrophil count (aOR 2.39, 95% CI 1.34-4.26) on admission as independent predictors of intubation with area under receiver operating characteristic curve of 0.928 (95% CI 0.828-0.979). Median APACHE II score was 19 (IQR 17-22) and PaO2/FiO2 ratio before intubation was 104 (IQR 89-129). Median peak FiO2 was 0.75 (IQR 0.6-1.0), positive end-expiratory pressure 12 (IQR 10-14) and plateau pressure 22 (IQR 18-26) in the first 24 h of ventilation. Median duration of ventilation was 6.5 days (IQR 5.5-13). There were no fatalities. Most COVID-19 patients in Singapore who required mechanical ventilation because of ARDS were extubated with no mortality.


Subject(s)
COVID-19/pathology , Adult , Area Under Curve , C-Reactive Protein/metabolism , COVID-19/virology , Dyspnea/etiology , Female , Humans , Intensive Care Units , L-Lactate Dehydrogenase/metabolism , Logistic Models , Male , Middle Aged , Neutrophils/cytology , Prospective Studies , ROC Curve , Respiration, Artificial , Respiratory Rate , SARS-CoV-2/isolation & purification , Severity of Illness Index , Singapore
9.
Clin Infect Dis ; 71(16): 2246-2248, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153148

ABSTRACT

The COVID-19 epidemic requires accurate identification and isolation of confirmed cases for effective control. This report describes the effectiveness of our testing strategy and highlights the importance of repeat testing in suspected cases in our cohort.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Adult , Female , Humans , Male , Radiography , Sampling Studies , Thorax/diagnostic imaging , Time Factors
10.
Open Forum Infect Dis ; 7(9): ofaa335, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-694710

ABSTRACT

BACKGROUND: The performance of real-time reverse transcription polymerase chain reaction (rRT-PCR) for SARS-CoV-2 varies with sampling site(s), illness stage, and infection site. METHODS: Unilateral nasopharyngeal, nasal midturbinate, throat swabs, and saliva were simultaneously sampled for SARS-CoV-2 rRT-PCR from suspected or confirmed cases of COVID-19. True positives were defined as patients with at least 1 SARS-CoV-2 detected by rRT-PCR from any site on the evaluation day or at any time point thereafter, until discharge. Diagnostic performance was assessed and extrapolated for site combinations. RESULTS: We evaluated 105 patients; 73 had active SARS-CoV-2 infection. Overall, nasopharyngeal specimens had the highest clinical sensitivity at 85%, followed by throat, 80%, midturbinate, 62%, and saliva, 38%-52%. Clinical sensitivity for nasopharyngeal, throat, midturbinate, and saliva was 95%, 88%, 72%, and 44%-56%, respectively, if taken ≤7 days from onset of illness, and 70%, 67%, 47%, 28%-44% if >7 days of illness. Comparing patients with upper respiratory tract infection (URTI) vs pneumonia, clinical sensitivity for nasopharyngeal, throat, midturbinate, and saliva was 92% vs 70%, 88% vs 61%, 70% vs 44%, 43%-54% vs 26%-45%, respectively. A combination of nasopharyngeal plus throat or midturbinate plus throat specimen afforded overall clinical sensitivities of 89%-92%; this rose to 96% for persons with URTI and 98% for persons ≤7 days from illness onset. CONCLUSIONS: Nasopharyngeal specimens, followed by throat specimens, offer the highest clinical sensitivity for COVID-19 diagnosis in early illness. Clinical sensitivity improves and is similar when either midturbinate or nasopharyngeal specimens are combined with throat specimens. Upper respiratory specimens perform poorly if taken after the first week of illness or if there is pneumonia.

11.
Front Immunol ; 11: 879, 2020.
Article in English | MEDLINE | ID: covidwho-239162

ABSTRACT

Since December 2019, the novel coronavirus, SARS-CoV-2, has garnered global attention due to its rapid transmission, which has infected more than two million people worldwide. Early detection of SARS-CoV-2 is one of the crucial interventions to control virus spread and dissemination. Molecular assays have been the gold standard to directly detect for the presence of viral genetic material in infected individuals. However, insufficient viral RNA at the point of detection may lead to false negative results. As such, it is important to also employ immune-based assays to determine one's exposure to SARS-CoV-2, as well as to assist in the surveillance of individuals with prior exposure to SARS-CoV-2. Within a span of 4 months, extensive studies have been done to develop serological systems to characterize the antibody profiles, as well as to identify and generate potentially neutralizing antibodies during SARS-CoV-2 infection. The vast diversity of novel findings has added value to coronavirus research, and a strategic consolidation is crucial to encompass the latest advances and developments. This review aims to provide a concise yet extensive collation of current immunoassays for SARS-CoV-2, while discussing the strengths, limitations and applications of antibody detection in SARS-CoV-2 research and control.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Immunoassay/methods , Pneumonia, Viral/diagnosis , Antibodies, Viral/analysis , Antigens, Viral/immunology , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Coronavirus Infections/immunology , Humans , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL